How Machine Learning is Revolutionizing the Healthcare Industry

What if i tell you that in near future surgeries will be performed by Machines. Yes, machine learning has advanced rapidly that  in near future it will be possible to perform medical surgeries with minimum or no interventions by a Physician. Machine learning is widely used in healthcare industry in 2020.

When we hear AI or machine learning the first thing that comes in our mind is Robots but machine learning is much more complicated than that. Machine learning has advanced in every possible field and revolutionized many industries such as healthcare, retail and banking.

What is Machine Learning?

Machine learning is an application of AI that provides the system with the ability to learn and improve from experiences without being programmed. the primary focus is to allow the computers to learn automatically without any human intervention or assistance.

The process of learning begins with observations of data and finding patterns in data and making better decisions in the future.

Machine Learning in Healthcare

The Healthcare industry has seen many advancements, but machine learning is one such advancement that has enhanced the performance of healthcare industry. Machine learning has advanced a lot but the best machine learning tool in healthcare industry is a doctors brain. Many physicians worry that machine learning will dominate the healthcare industry.

Machine learning
Machine learning

Machine learning should be focused on how it can be used to augment patient care and employed as a tool by physicians to improve clinical use. Machine learning can never replace physicians because even if it reached supremacy, the patient always needs the human touch and caring of a physician.

If you are still skeptical about AI and Machine Learning get started with these Books.

How Machine learning is Employed in Healthcare

Identifying Disease and Diagnosis

Scientists are already working on machine learning models that predict disease or early diagnosis of disease and illness. A UK based technology startup feebris is working on artificial intelligence algorithms for precise detection of complex respiratory conditions. MIT’s Computer Science and Artificial Intelligence Lab has developed a new deep learning-based prediction model that can predict the development of breast cancer in advance up to five years.

Robotic Surgery

The application of robotics in healthcare is rapidly growing since it began in 1980. Robots performing surgery still might sound untrustworthy to many but in near future, it will be commonly used in surgeries. Robotics is also used in hospitals to monitor the patients and alert the nurses if there is human interaction required.

Application of Robotics in Healthcare
Application of Robotics in Healthcare

The robotic assistant can locate the blood vessel and draw the blood with less pain and anxiety for the patient. Robots also prepare and dispense medications in pharmacological labs. In large facilities robotics are used as a cart to carry medical supplies. Speaking about robots replacing humans is not happening anywhere soon, robotics can only assist the doctors but can never replace them.

Medical Imaging Diagnosis

Medical imaging diagnosis is a process or technique in which visual representation of tissue or internal parts of organs are created to monitor health, diagnose and treat diseases. It also helps in creating database of anatomy and physiology. Surgical interventions can be avoided if medical imaging technology like ultrasound and MRI are used.

Machine learning use
What do you use or plan to use Machine Learning for

Machine learning algorithms can rapidly process massive amount of medical images and they can be precisely trained to identify the details in CT scans and MRI's. A deep learning team from US, France and Germany have developed algorithm that can diagnose skin cancer more accurately than a dermatologist.


19 Innovative Health Startups in India | List of Top Healthcare Startups
The hunger for success makes you forget about health. You might be working hard on your startup but it doesn’t mean you slowly kill yourself for a bright entrepreneurial future. A wise man once said that health is wealth [/tag/wealth-management/]. The healthcare sector is growing rapidly in the In…

Pros and Cons of Machine Learning in Healthcare

Pros

1.Patterns are identified by ease

A great ability of machine learning is that it can identify patterns and data precisely which might not be possible by a human. It can process massive amount of patterns and data rapidly with ease.

2. Smart Health Records

Maintaining health records is an exhaustive process so machine learning is used to ease the process and reduce the time and efforts required for maintaining health records. Machine learning in today's world is working on cutting edge technologies for maintaining smart data records.

3. Machine learning requires minimum intervention by humans

Machine learning adapts overtime by learning from patterns and data. The primary benefit of machine learning is that it requires minimum intervention by humans and it can perform surgeries with ease.


FindMyHealth Company Profile - Startup that Combines AI and Ayurveda for Health Monitoring
Artificial Intelligence is now penetrating almost every existing domain. Finance, healthcare, education, transportation and many sectors are witnessing active use of AI. The idea of this startup was born when Gaurav Bhalotia realised there is a lot to health beyond medicine, and that our bodies need…

Cons

1. Data Acquisition

Machine learning adapts through patterns and data sets and it requires a massive data sets and patterns to train its algorithms. The data should be precise and of good quality.

2. Time to Learn and Adapt

Machine learning requires enough time for its algorithms to learn and adapt to the patterns and data so that it can deliver accurate results. It requires additional computer power to function.

3. High Error-Susceptibility

Machine learning is highly susceptible to errors, it requires massive amount of data and if it is not provided with sufficient amount of data it may not function properly. Any inaccurate data fed to the machine may end up in undesirable result.


Tattvan Success Story - Bringing World-Class E-Clinics to India
Today a tiny fraction of Indians in large urban cities and smaller towns, cities, and villages have access to the kind of healthcare they deserve. Mr. Ayush Atul Mishra launched Tattvan in 2016 with the passion and idea to bring quality healthcare to the masses. At Tattvan, the team strives to bri…

Future of machine learning in healthcare

The development in machine learning will be  able to automatically detect most of the diseases in its early stage. It will also increase the efficiency and accuracy in disease detection to reduce the burden on doctors. AI and machine learning will revolutionize the future healthcare industry.

Machine learning has advanced rapidly in every field such as navigation, business, retail, and banking but progressing in the healthcare industry is difficult because of the limited availability of data and lack of highly skilled scientists. Machine learning still requires improvements and several factors need to be improved. AI system are projected to be a $6 billion dollar industry.

Author image

About Arbaaz sayed

Content editor at startuptalky